A qualitative event-based approach to multiple fault diagnosis in continuous systems using structural model decomposition
نویسندگان
چکیده
Multiple fault diagnosis is a difficult problem for dynamic systems, and, as a result, most multiple fault diagnosis approaches are restricted to static systems, and most dynamic system diagnosis approaches make the single fault assumption. Within the framework of consistency-based diagnosis, the challenge is to generate conflicts from dynamic signals. For multiple faults, this becomes difficult due to the possibility of fault masking and different relative times of fault occurrence, resulting in many different ways that any given combination of faults can manifest in the observations. In order to address these challenges, we develop a novel multiple fault diagnosis framework for continuous dynamic systems. We construct a qualitative event-based framework, in which discrete qualitative symbols are generated from residual signals. Within this framework, we formulate an online diagnosis approach and establish definitions of multiple fault diagnosability. Residual generators are constructed based on structural model decomposition, which, as we demonstrate, has the effect of reducing the impact of fault masking by decoupling faults from residuals, thus improving diagnosability and fault isolation performance. Through simulation-based multiple fault diagnosis experiments, we demonstrate and validate the concepts developed here, using a multi-tank system as a case study. Published by Elsevier Ltd.
منابع مشابه
A Qualitative Fault Isolation Approach for Parametric and Discrete Faults Using Structural Model Decomposition
With increasing complexity of engineering systems, fault diagnostics plays a significant role in ensuring that they operate safely. Such systems most often exhibit mixed discrete and continuous, i.e., hybrid, behavior, and may encounter both parametric faults (unexpected changes in system parameters) as well as discrete faults (unexpected changes in component modes). Diagnosis becomes computati...
متن کاملAn Efficient Model-based Diagnosis Engine for Hybrid Systems using Structural Model Decomposition
Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis appl...
متن کاملQualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach
Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. Th...
متن کاملImproving Multiple Fault Diagnosability using Possible Conflicts ?
Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-ba...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 53 شماره
صفحات -
تاریخ انتشار 2016